Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Floating point divider design of high-performance double precision based on Goldschmidt's algorithm
HE Tingting, PENG Yuanxi, LEI Yuanwu
Journal of Computer Applications    2015, 35 (7): 1854-1857.   DOI: 10.11772/j.issn.1001-9081.2015.07.1854
Abstract864)      PDF (740KB)(654)       Save

Focusing on the issue that division is complex and needs a large delay to compute, a kind of method for designing the unit of high-performance double precision floating point divider based on Goldschmidt's algorithm was proposed and it supported IEEE-754 standard. Firstly, it was analyzed that how to compute division using Goldschmidt's algorithm and the error produced during iterative operation. Then, the method for controlling error was proposed. Secondly, bipartite reciprocal tables were adopted to calculate initial value of iteration with area saving, and parallel multipliers were adopted in the iterative unit for accelerating. Lastly, the executed station was divided reasonably and it made floating point divider supporting pipeline execution with state machine controlling. So, the speed of divider was improved. The experimental results show that the double precision floating point divider adopted 14-bit iterative initial value pipeline structure, its synthesis cell area is 84902.2618 μm2, the running frequency is up to 2.2 GHz with 40 nm technology. Compared with 8-bit iterative initial value pipeline structure, computing speed is increased by 32.73% and area is increased by 5.05%. The delay of a double precision floating division instruction is 12 cycles, and it is decreased to 3 cycles in pipeline execution. Compared with the divider based on SRT algorithm implemented in other processers, data throughput is improved by 3-7 times. Compared with the divider based on Goldschmidt's algorithm implemented in other processers, data throughput is improved by 2-3 times.

Reference | Related Articles | Metrics